Publications
Google Scholar2023
85
Shaped to roll along a programmed periodic pathMatsumoto, E. A., Segerman, H. (2023). Shaped to roll along a programmed periodic path. Nature 620, 282-283. (News and views). https://doi.org/10.1038/d41586-023-02335-9
84
Robust Design of Effective Allosteric Activators for Rsp5 E3 Ligase Using the Machine Learning Tool ProteinMPNNKao, H. W., Lu, W. L., Ho, M. R., Lin, Y. F., Hsieh, Y. J., Ko, T. P., Hsu, S. T. D., & Wu, K. P. (2023). Robust Design of Effective Allosteric Activators for Rsp5 E3 Ligase Using the Machine Learning Tool ProteinMPNN. ACS Synthetic Biology, 12(8), 2310-2319. https://doi.org/10.1021/acssynbio.3c00042
83
Presentation of the fundamental groups of complements of shadowsIshikawa, M., Koda, Y., Naoe, H. (2023). In A. Papadopoulos (Ed.), Presentation of the fundamental groups of complements of shadows. Essays in Geometry: Dedicated to Norbert A’Campo (pp. 557-588). European Mathematical Society Press. https://ems.press/books/irma/265/5263
82
Time-, spin-, and angle-resolved photoemission spectroscopy with a 1-MHz 10.7-eV pulse laserKawaguchi, K., Kuroda, K., Zhao, Z., Tani, S., Harasawa, A., Fukushima, Y., Tanaka, H., Noguchi, R. Iimori, T. Yaji, K. Fujisawa, M., Shin, S., Komori, F., Kobayashi, Y., & Kondo, T. (2023). Time-, spin-, and angle-resolved photoemission spectroscopy with a 1-MHz 10.7-eV pulse laser. Review of Scientific Instruments, 94(8). https://doi.org/10.1063/5.0151859
81
Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisionsALICE Collaboration. (2023). Inclusive and multiplicity dependent production of electrons from heavy-flavour hadron decays in pp and p-Pb collisions. Journal of high energy physics, 2023, 6, 1-53. https://doi.org/10.1007/JHEP08%282023%29006
80
Topological solitonic macromoleculesZhao, H., Malomed, B. A., & Smalyukh, I. I. (2023). Topological solitonic macromolecules. Nature Communications, 14(1), 4581. https://doi.org/10.1038/s41467-023-40335-5
79
Ribbon Yetter—Drinfeld modules and tangle invariantsHabiro, K., & Kotorii, Y. (2023). Ribbon Yetter--Drinfeld modules and tangle invariants. Journal of Topology and Analysis. https://doi.org/10.1142/S179352532350019X
78
Enhanced deuteron coalescence probability in jetsALICE Collaboration. (2023). Enhanced deuteron coalescence probability in jets. Physical Review Letters, 131(4), 042301. https://doi.org/10.1103/PhysRevLett.131.042301
77
Measurement of the angle between jet axes in pp collisions at √s = 5.02 TeVALICE Collaboration. (2023). Measurement of the angle between jet axes in pp collisions at √s = 5.02 TeV. Journal OF High Energy Physics, 2023, 201, 1-47. https://doi.org/10.1007/JHEP07%282023%29201
76
One-Dimensional Band Structure in Quasi-Two-Dimensional η-Mo4O11 Revealed by Angle-Resolved Photoelectron Spectroscopy and First-Principles CalculationSumida, K., Higaki, S., Sato, H., Tsuru, D., Miyamoto, K., Okuda, T., Kuroiwa, Y., Moriyoshi, C., Takase, K., Oguchi, T., & Kimura, A. (2023). One-Dimensional Band Structure in Quasi-Two-Dimensional η-Mo4O11 Revealed by Angle-Resolved Photoelectron Spectroscopy and First-Principles Calculation. Journal of the Physical Society of Japan, 92,(8), 084706. https://doi.org/10.7566/JPSJ.92.084706
75
Measurement of the J/ψ Polarization with Respect to the Event Plane in Pb-Pb Collisions at the LHCALICE Collaboration. (2023). Measurement of the J/ψ Polarization with Respect to the Event Plane in Pb-Pb Collisions at the LHC. Physical Review Letters, 131(4), 042303. https://doi.org/10.1103/PhysRevLett.131.042303
74
First measurement of antideuteron number fluctuations at energies available at the Large Hadron ColliderALICE Collaboration. (2023). First measurement of antideuteron number fluctuations at energies available at the Large Hadron Collider. Physical Review Letters, 131(4), 041901. https://doi.org/10.1103/PhysRevLett.131.041901
73
Inclusive photon production at forward rapidities in pp and p—Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Inclusive photon production at forward rapidities in pp and p—Pb collisions at √sNN = 5.02 TeV. The European Physical Journal C, 83, 661. https://doi.org/10.1140/epjc/s10052-023-11729-y
72
Phase Transitions in Particle Physics: Results and Perspectives from Lattice Quantum Chromo-DynamicsAarts, G., Aichelin, J., Allton, C., Athenodorou, A., Bachtis, D., Bonanno, C., Brambilla, N., Bratkovskaya, E., Bruno, M., Caselle, M., Conti, C., Contino, R., Cosmai, L., Cuteri, F., Debbio, L. D., D'Elia, M., Dimopoulos, P., Di Renzo, F., Galatyuk, T., Guenther, J. N., Houtz, R., Karsch, F., Kotov, A. Y., Lombardo, M. P., Lucini, B., Maio, L., Panero, M., Pawlowski, J. M., Pelissetto, A., Philipsen, O., Raga, A., Ratti, C., Ryan, S. M., Sannino, F., Sasaki, C., Schicho, P., Schmidt, C., Sharma, S., Soloveva, O., Sorba, M., & Wiese, U. J. (2023). Phase transitions in particle physics: Results and perspectives from lattice Quantum Chromo-Dynamics. Progress in Particle and Nuclear Physics, 133, 104070. https://doi.org/10.1016/j.ppnp.2023.104070
71
自己修復性超分子グラフトポリマー材料Haino, T., Nitta, T. (2023). 自己修復性超分子グラフトポリマー材料. in M, Suzuki (Ed.), 低分子ゲル・超分子ゲルの設計開発と応用 (Chapter 2). CMC Publishing.
70
Tilted spirals and low-temperature skyrmions in Cu 2 OSeO 3Crisanti, M., Leonov, A. O., Cubitt, R., Labh, A., Wilhelm, H., Schmidt, M. P., & Pappas, C. (2023). Tilted spirals and low-temperature skyrmions in Cu 2 OSeO 3. Physical Review Research, 5(3), 033033 https://doi.org/10.1103/PhysRevResearch.5.033033
69
Production of K0 S , Λ (Λ), Ξ±, and Ω± in jets and in the underlying event in pp and p—Pb collisionsALICE collaboration. (2023). Production of K0S, Λ (Λ¯), Ξ±, and Ω±in jets and in the underlying event in pp and p—Pb collisions. Journal of High Energy Physics, 2023, 136. https://doi.org/10.1007/JHEP07%282023%29136
68
J/ψ production at midrapidity in p-Pb collisions at √sNN = 8.16 TeVALICE Collaboration. (2023). J/ψ production at midrapidity in p-Pb collisions at √sNN = 8.16 TeV. Journal of High Energy Physics, 2023, 137. https://doi.org/10.1007/JHEP07%282023%29137
67
Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic HelimagnetsShigenaga, T., & Leonov, A. O. (2023). Harnessing skyrmion Hall effect by thickness gradients in wedge-shaped samples of cubic helimagnets. Nanomaterials, 13(14), 2073. https://doi.org/10.3390/nano13142073
66
Experimental study of in-medium spectral change of vector mesons at J-PARCAoki, K., Arimizu, D., Ashikaga, S., Chang, W. C., Chujo, T., Ebata, K., En’yo, H., Esumi, S., Hamagaki, H., Honda, R., Ichikawa, M., Kajikawa, S., Kanno, K., Kimura, Y., Kiyomichi, A., Kondo, T. K., Kyan, S., Lin, C. S., Lin, C. H., Morino, Y., Murakami, H., Murakami, T. N., Muto, R., Nagafusa, S., Nakai, W., Nakasuga, S., Naruki, M., Nonaka, T., Noumi, H., Ochiai, S., Ozawa, K., Sakaguchi, T., Sako, H., Sakuma, F., Sato, S., Sawada, S., Sekimoto, M., Shigaki, K., Shirotori, K., Sugimura, H., Takahashi, T. N., Takaura, Y., Tatsumi, R., Tsukui, K., Wang, P. H., Yahiro, K., Yamaguchi, K. H., & Yokkaichi, S. (2023). Experimental study of in-medium spectral change of vector mesons at J-PARC. Few-Body Systems, 64(3), 63. https://doi.org/10.1007/s00601-023-01828-7
65
Symmetry plane correlations in Pb—Pb collisions at √sNN = 2.76 TeVALICE Collaboration. (2023). Symmetry plane correlations in Pb—Pb collisions at √sNN = 2.76 TeV. The European Physical Journal C, 83, 576. https://doi.org/10.1140/epjc/s10052-023-11658-w
64
Towards the understanding of the genuine three-body interaction for p—p—p and p—p—ΛALICE Collaboration. (2023). Towards the understanding of the genuine three-body interaction for p—p—p and p—p—Λ. The European Physical Journal A, 59, 145. https://doi.org/10.1140/epja/s10050-023-00998-6
63
Multiplicity and rapidity dependence of K∗(892) 0 and ϕ (1020) production in p—Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Multiplicity and rapidity dependence of K∗(892) 0 and ϕ (1020) production in p—Pb collisions at √sNN = 5.02 TeV. The European Physical Journal C, 83, 540. https://doi.org/10.1140/epjc/s10052-023-11449-3
62
Boosting the surface conduction in a topological insulatorTaupin, M., Eguchi, G., Lužnik, M., Steiger-Thirsfeld, A., Ishida, Y., Kuroda, K, Shin, S., Kimura, A., & Paschen, S. (2023). Boosting the surface conduction in a topological insulator. Physical Review B, 107, 235306. https://doi.org/10.1103/PhysRevB.107.235306
61
Link-homotopy classes of 4-component links and claspersKotorii, Y., & Mizusawa, A. (2023). Link-homotopy classes of 4-component links and claspers. Journal of Knot Theory and Its Ramifications, 32(6), 2350041. https://doi.org/10.1142/S0218216523500451
60
Measurement of ψ (2S) production as a function of charged-particle pseudorapidity density in pp collisions at √s = 13 TeV and p—Pb collisions at √sNN = 8.16 TeV with ALICE at the LHCALICE Collaboration (2023). Measurement of ψ (2S) production as a function of charged-particle pseudorapidity density in pp collisions at √s = 13 TeV and p—Pb collisions at √sNN = 8.16 TeV with ALICE at the LHC. Journal of High Energy Physics, 2023, 147. https://doi.org/10.1007/JHEP06%282023%29147
59
Measurement of the production of charm jets tagged with D0 mesons in pp collisions at √s = 5.02 and 13 TeVALICE Collaboration. (2023). Measurement of the production of charm jets tagged with D0 mesons in pp collisions at √s = 5.02 and 13 TeV. Journal of high energy physics, 2023, 133. https://doi.org/10.1007/JHEP06%282023%29133
58
Measurement of Direct-Photon Cross Section and Double-Helicity Asymmetry at √s = 510 GeV in p→+p→ CollisionsPHENIX Collaboration. (2023). Measurement of direct-photon cross section and double-helicity asymmetry at √s = 510 gev in p→+ p→ collisions. Physical Review Letters, 130(25), 251901. https://doi.org/10.1103/PhysRevLett.130.251901
57
Molecular and Crystal Structure, Spectroscopy, and Photochemistry of a Dispiro Compound Bearing the Tetraoxane PharmacophoreAmado, P. S. M., Lopes, S., Brás, E. M., Paixão, J. A., Takano, M. A., Abe, M., Fausto, R., & Cristiano, M. L. S. (2023). Molecular and Crystal Structure, Spectroscopy, and Photochemistry of a Dispiro Compound Bearing the Tetraoxane Pharmacophore. Chemistry—A European Journal, 29(48), e202301315. https://doi.org/10.1002/chem.202301315
56
Study of charged particle production at high pT using event topology in pp, p—Pb and Pb—Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Study of charged particle production at high pT using event topology in pp, p—Pb and Pb—Pb collisions at √sNN = 5.02 TeV. Physics letters B, 843, 137649. https://doi.org/10.1016/j.physletb.2022.137649
55
Elucidation of the folding pathway of a circular permutant of topologically knotted YbeA by tryptophan substitutionsPuri, S., Liu, C. Y., Hu, I. C., Lai, C. H., Hsu, S. T. D., & Lyu, P. C. (2023). Elucidation of the folding pathway of a circular permutant of topologically knotted YbeA by tryptophan substitutions. Biochemical and Biophysical Research Communications, 672, 81-88. https://doi.org/10.1016/j.bbrc.2023.06.021
54
Nanoarchitectonics of supramolecular porphyrins based on a bis (porphyrin) cleft moleculeHirao, T., & Haino, T. (2023). Nanoarchitectonics of supramolecular porphyrins based on a bis (porphyrin) cleft molecule. Journal of Porphyrins and Phthalocyanines, 27(07n10), 966-979. https://doi.org/10.1142/S1088424623300082
53
High Density of N-and O-Glycosylation Shields and Defines the Structural Dynamics of the Intrinsically Disordered Ectodomain of Receptor-type Protein Tyrosine Phosphatase AlphaChien, Y. C., Wang, Y. S., Sridharan, D., Kuo, C. W., Chien, C. T., Uchihashi, T., Kato, K., Angata, T,. Meng, T. C., Hsu, S. T. D., & Khoo, K. H. (2023). High Density of N-and O-Glycosylation Shields and Defines the Structural Dynamics of the Intrinsically Disordered Ectodomain of Receptor-type Protein Tyrosine Phosphatase Alpha. JACS Au, 3(7), 1864-1875. https://doi.org/10.1021/jacsau.3c00124
52
Jet-like correlations with respect to K0S and Λ (Λ¯) in pp and central Pb–Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Jet-like correlations with respect to K0S and Λ (Λ¯) in pp and central Pb–Pb collisions at √sNN = 5.02 TeV. The European Physical Journal C, 83, 497. https://doi.org/10.1140/epjc/s10052-023-11614-8
51
Transverse single-spin asymmetry of midrapidity π 0 and η mesons in p+ Au and p+ Al collisions at √sNN = 200 GeVPHENIX Collaboration. (2023). Transverse single-spin asymmetry of midrapidity π 0 and η mesons in p+ Au and p+ Al collisions at √sNN = 200 GeV. Physical Review D, 107, 112004. https://doi.org/10.1103/PhysRevD.107.112004
50
Light (anti) nuclei production in Pb-Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Light (anti) nuclei production in Pb-Pb collisions at √sNN = 5.02 TeV. Physical Review C, 107, 064904. https://doi.org/10.1103/PhysRevC.107.064904
49
Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at √s = 13 TeVALICE Collaboration. (2023). Production of pions, kaons, and protons as a function of the relative transverse activity classifier in pp collisions at √s = 13 TeV. Journal of High Energy Physics, 2023, 27. https://doi.org/10.1007/JHEP06%282023%29027
48
Neutron emission in ultraperipheral Pb-Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Neutron emission in ultraperipheral Pb-Pb collisions at √sNN = 5.02 TeV. Physical Review C, 107, 064902.. https://doi.org/10.1103/PhysRevC.107.064902
47
Underlying-event properties in pp and p—Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Underlying-event properties in pp and p—Pb collisions at √sNN = 5.02 TeV. Journal of High Energy Physics, 2023, 23. https://doi.org/10.1007/JHEP06%282023%29023
46
Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb—Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb $-$ Pb collisions at √sNN = 5.02$ TeV. Journal of High Energy Physics, 2023, 24. https://doi.org/10.1007/JHEP06%282023%29024
45
First measurement of Λ+c production down to pT=0 in pp and p-Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). First measurement of Λ c+ production down to p T= 0 in p p and p-Pb collisions at √sNN = 5.02 TeV. Physical Review C, 107, 064901.. https://doi.org/10.1103/PhysRevC.107.064901
44
Light-Mediated Synthesis of 2-(4-Methoxyphenyl)-1-pyrroline via Intramolecular Reductive Cyclization of a Triplet AlkylnitreneGeorge, S., Govorov, D., Gatlin, D. M., Merugu, R., Wasson, F. J., Shields, D. J., Allen, Y., Muthukrishan, S., Krause, J. A., Abe, M., & Gudmundsdottir, A. D. (2023). Light-Mediated Synthesis of 2-(4-Methoxyphenyl)-1-pyrroline via Intramolecular Reductive Cyclization of a Triplet Alkylnitrene. Organic Letters, 25(23), 4345-4349. https://doi.org/10.1021/acs.orglett.3c01476
43
An N‐glycopeptide MS/MS data analysis workflow leveraging two complementary glycoproteomic software tools for more confident identification and assignmentsKuo, C. W., Chang, N. E., Yu, P. Y., Yang, T. J., Hsu, S. T. D., & Khoo, K. H. (2023). An N‐glycopeptide MS/MS data analysis workflow leveraging two complementary glycoproteomic software tools for more confident identification and assignments. Proteomics, 23(20), 2300143. https://doi.org/10.1002/pmic.202300143
42
Evidence of 3D Dirac conical bands in TlBiSSe by optical and magneto-optical spectroscopyMardelé, F. L., Wyzula, J., Mohelsky, I., Nasrallah, S., Loh, M., David, S. B., Toledano, O., Tolj, D., Novak, M., Eguchi, G., Paschen, S., Barišić, N., Chen, J., Kimura, A., Orlita, M., Rukelj, Z., Akrap, A., Santos-Cottin, D. (2023). Evidence of 3D Dirac conical bands in TlBiSSe by optical and magneto-optical spectroscopy. Phyisical Review B, 107(24), L241101. https://doi.org/10.1103/PhysRevB.107.L241101
41
Measurement of inclusive and leading subjet fragmentation in pp and Pb—Pb collisions at √sNN = 5.02 TeVALICE collaboration. (2023). Measurement of inclusive and leading subjet fragmentation in pp and Pb—Pb collisions at √sNN = 5.02 TeV. Journal of High Energy Physics, 2023, 245. https://doi.org/10.1007/JHEP05%282023%29245
40
Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at √s = 5.02 TeVALICE Collaboration. (2023). Measurements of the groomed jet radius and momentum splitting fraction with the soft drop and dynamical grooming algorithms in pp collisions at √s = 5.02 TeV. Journal of high energy physics, 2023, 244. https://doi.org/10.1007/JHEP05%282023%29244
39
Anisotropic flow and flow fluctuations of identified hadrons in Pb—Pb collisions at √sNN = 5.02 TeVALICE collaboration. (2023). Anisotropic flow and flow fluctuations of identified hadrons in Pb—Pb collisions at √sNN = 5.02 TeV. Journal of High Energy Physics, 2023, 243. https://doi.org/10.1007/JHEP05%282023%29243
38
Two-particle transverse momentum correlations in p p and p-Pb collisions at energies available at the CERN Large Hadron ColliderALICE Collaboration. (2023). Two-particle transverse momentum correlations in p p and p-Pb collisions at energies available at the CERN Large Hadron Collider. Physical Review C, 107, 054617. https://doi.org/10.1103/PhysRevC.107.054617
37
Observation of flow angle and flow magnitude fluctuations in Pb-Pb collisions at √sNN = 5.02 TeV at the CERN Large Hadron ColliderALICE Collaboration. (2023). Observation of flow angle and flow magnitude fluctuations in Pb-Pb collisions at √sNN = 5.02 TeV at the CERN Large Hadron Collider. Physical Review C, 107, L051901. https://doi.org/10.1103/PhysRevC.107.L051901
36
Quasicrystals in QCDQiu, Z., & Nitta, M. (2023). Quasicrystals in QCD. Journal of High Energy Physics, 2023(5), 1-19. https://doi.org/10.1007/JHEP05%282023%29170
35
All-order resurgence from complexified path integral in a quantum mechanical system with integrabilityFujimori, T., Kamata, S., Misumi, T., Nitta, M., & Sakai, N. (2023). All-order resurgence from complexified path integral in a quantum mechanical system with integrability. Physical Review D, 107(10), 105011. https://doi.org/10.1103/PhysRevD.107.105011
34
W±-boson production in p—Pb collisions at √sNN = 8.16 TeV and Pb—Pb collisions at √sNN = 5.02 TeVALICE Collaboration. (2023). W±-boson production in p—Pb collisions at √sNN = 8.16 TeV and Pb—Pb collisions at √sNN = 5.02 TeV. Journal of High Energy Physics, 2023, 36. https://doi.org/10.1007/JHEP05%282023%29036
33
Investigation of K+K− interactions via femtoscopy in Pb-Pb collisions at √sNN=2.76 TeV at the CERN Large Hadron ColliderALICE Collaboration. (2023). Investigation of K+ K− interactions via femtoscopy in Pb-Pb collisions at √sNN= 2.76 TeV at the CERN Large Hadron Collider. Physical Review C, 107, 054904. https://doi.org/10.1103/PhysRevC.107.054904
32
Σ (1385)±resonance production in Pb—Pb collisions at √sNN= 5.02 TeVALICE Collaboration. (2023). Σ (1385)±resonance production in Pb—Pb collisions at √sNN= 5.02 TeV. The European Physical Journal C, 83, 351. https://doi.org/10.1140/epjc/s10052-023-11475-1
31
Semiconducting Electronic Structure of the Ferromagnetic Spinel HgCr2Se4 Revealed by Soft-X-Ray Angle-Resolved Photoemission SpectroscopyTanaka, H., Telegin, A. V., Sukhorukov, Y. P., Golyashov, V. A., Tereshchenko, O. E., Lavrov, A. N., Matsuda, T., Matsunaga, R., Akashi, R., Lippmaa, M., Arai, Y., Ideta, S., Tanaka, K., Kondo, T., & Kuroda, K. (2023). Semiconducting Electronic Structure of the Ferromagnetic Spinel HgCr 2 Se 4 Revealed by Soft-X-Ray Angle-Resolved Photoemission Spectroscopy. Physical Review Letters, 130(18), 186402. https://doi.org/10.1103/PhysRevLett.130.186402
30
Constraining the KN coupled channel dynamics using femtoscopic correlations at the LHCALICE Collaboration. (2023). Constraining the K¯ N coupled channel dynamics using femtoscopic correlations at the LHC. The European Physical Journal C, 83, 340. https://doi.org/10.1140/epjc/s10052-023-11476-0
29
Cooperativity in molecular recognition of feet-to-feet-connected biscavitandsHaino, T. (2023). Cooperativity in molecular recognition of feet-to-feet-connected biscavitands. Pure and Applied Chemistry, 95(4), 343-352. https://doi.org/10.1515/pac-2023-0206
28
Development of Supramolecular Polymers with Unique Chain StructuresHirao, T., Haino, T. (2023). Development of Supramolecular Polymers with Unique Chain Structures. In O, Azzaroni., & M, Conda-Sheridan (Eds.), Supramolecular Nanotechnology: Advanced Design of Self‐Assembled Functional Materials Vol.3 (pp. 1085-1100). Wiley‐VCH GmbH. https://doi.org/10.1002/9783527834044.ch40
27
A non-commutative Reidemeister-Turaev torsion of homology cylindersNozaki, Y., Sato, M., & Suzuki, M. (2023). A non-commutative Reidemeister-Turaev torsion of homology cylinders. Transactions of the American Mathematical Society, 376(07), 5045-5088.
. https://doi.org/10.1090/tran/8925
. https://doi.org/10.1090/tran/8925
26
Ultrafast electron dynamics in a topological surface state observed in two-dimensional momentum spaceReimann, J., Sumida, K., Kakoki, M., Kokh, K. A., Tereshchenko, O. E., Kimura, A., Güdde, J., & Höfer, U. (2023). Ultrafast electron dynamics in a topological surface state observed in two-dimensional momentum space. Scientific Reports, 13(1), 5796. https://doi.org/10.1038/s41598-023-32811-1
25
Induction of Chirality on NanographenesArimura, S., Matsumoto, I., Nishitani, S., Sekiya, R., & Haino, T. (2023). Induction of Chirality on Nanographenes. Chemistry—An Asian Journal, 18(11), e202300126. https://doi.org/10.1002/asia.202300126
24
Proximity effects of vortices in neutron 3 P 2 superfluids in neutron stars: Vortex core transitions and covalent bonding of vortex moleculesKobayashi, M., & Nitta, M. (2023). Proximity effects of vortices in neutron 3 P 2 superfluids in neutron stars: Vortex core transitions and covalent bonding of vortex molecules. Physical Review C, 107(4), 045801. https://doi.org/10.1103/PhysRevC.107.045801
23
New (α β γ)-incommensurate magnetic phase discovered in the MnCr 2 O 4 spinel at low temperaturesPardo-Sainz, M., Toshima, A., André, G., Basbus, J., Cuello, G. J., Laliena, V., Honda, T., Otomo, T., Inoue, K., Hosokoshi, Y., Kousaka, Y., & Campo,J. (2023). New (α β γ)-incommensurate magnetic phase discovered in the MnCr 2 O 4 spinel at low temperatures. Physical Review B, 107(14), 144401. https://doi.org/10.1103/PhysRevB.107.144401
22
Fluctuations near the liquid-gas and chiral phase transitions in hadronic matterMarczenko, M., Redlich, K., & Sasaki, C. (2023). Fluctuations near the liquid-gas and chiral phase transitions in hadronic matter. Physical Review D, 107(5), 147298. https://doi.org/10.1103/PhysRevD.107.054046
21
Positive flow-spines and contact 3-manifoldsIshii, I., Ishikawa, M., Koda, Y., & Naoe, H. (2023). Positive flow-spines and contact 3-manifolds. Annali di Matematica Pura ed Applicata (1923-), 202(5), 2091-2126. https://doi.org/10.1007/s10231-023-01314-1
20
Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in p↑+p collisions at √s=200 GeVPHENIX Collaboration. (2023). Improving constraints on gluon spin-momentum correlations in transversely polarized protons via midrapidity open-heavy-flavor electrons in p↑+ p collisions at s= 200 GeV. Physical Review D, 107, 052012. https://doi.org/10.1103/PhysRevD.107.052012
19
Negative Homotropic Cooperativity in Guest Binding of a Trisporphyrin Double CleftHisano, N., Kodama, T., & Haino, T. (2023). Negative Homotropic Cooperativity in Guest Binding of a Trisporphyrin Double Cleft. Chemistry—A European Journal, 29(32), 147298. https://doi.org/10.1002/chem.202300107
18
Defect line coarsening and refinement in active nematicsKralj, N., Ravnik, M., & Kos, Ž. (2023). Defect line coarsening and refinement in active nematics. Physical Review Letters, 130(12), 147298. https://doi.org/10.1103/PhysRevLett.130.128101
17
Relativistic resistive magneto-hydrodynamics code for high-energy heavy-ion collisionsNakamura, K., Miyoshi, T., Nonaka, C., & Takahashi, H. R. (2023). Relativistic resistive magneto-hydrodynamics code for high-energy heavy-ion collisions. The European Physical Journal C, 83(3), 1-17. https://doi.org/10.1140/epjc/s10052-023-11343-y
16
Charge-dependent anisotropic flow in high-energy heavy-ion collisions from a relativistic resistive magneto-hydrodynamic expansionNakamura, K., Miyoshi, T., Nonaka, C., & Takahashi, H. R. (2023). Charge-dependent anisotropic flow in high-energy heavy-ion collisions from a relativistic resistive magneto-hydrodynamic expansion. Physical Review C, 107(3), 034912. https://doi.org/10.1103/PhysRevC.107.034912
15
Substituent-Induced Supramolecular Aggregates of Edge Functionalized NanographenesMoriguchi, H., Sekiya, R., & Haino, T. (2023). Substituent‐Induced Supramolecular Aggregates of Edge Functionalized Nanographenes. Small, 19(31), 147298. https://doi.org/10.1002/smll.202207475
14
Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildingsAbraham, E., Cherpak, V., Senyuk, B., ten Hove, J. B., Lee, T., Liu, Q., & Smalyukh, I. I. (2023). Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nature Energy, 8(4), 381 https://doi.org/10.1038/s41560-023-01226-7
13
Excited-State Intramolecular Proton Transfer in Salicylidene-α-Hydroxy Carboxylate Derivatives: Direct Detection of the Triplet Excited State of the cis-Keto TautomerWeragoda, G. K., Abdelaziz, N. M., Govorov, D., Merugu, R., Patton, L. J., Grabo, J. E., Ranaweera. R. A. A. U., Ratliff, A. C., Mendis, W. D., Ahmed, N., Vilinsky, K. H., Abe, M. Baldwin, M. J., & Gudmundsdottir, A. D. (2023). Excited-State Intramolecular Proton Transfer in Salicylidene-α-Hydroxy Carboxylate Derivatives: Direct Detection of the Triplet Excited State of the cis-Keto Tautomer. The Journal of Physical Chemistry A, 127(12), 2765-2778. https://doi.org/10.1021/acs.jpca.3c00543
12
Effects of Edge Functionalization of Nanographenes with Small Aromatic SystemsTakahashi, S., Sekiya, R., & Haino, T. (2023). Effects of Edge Functionalization of Nanographenes with Small Aromatic Systems. ChemPhysChem, 24(12), 147298. https://doi.org/10.1002/cphc.202300066
11
SPADExp: A photoemission angular distribution simulator directly linked to first-principles calculationsTanaka, H., Kuroda, K., & Matsushita, T. (2023). SPADExp: A photoemission angular distribution simulator directly linked to first-principles calculations. Journal of Electron Spectroscopy and Related Phenomena, 264, 147298. https://doi.org/10.1016/j.elspec.2023.147297
10
Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering TemperaturesLeonov, A. O., & Rößler, U. K. (2023). Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures. Nanomaterials, 13(5), 891. https://doi.org/10.3390/nano13050891
2024
9
Innentitelbild: Synthesis of Supramolecular A8Bn Miktoarm Star Copolymers by Host‐Guest Complexation (Angew. Chem. 14/2023)Nitta, N., Kihara, S. I., & Haino, T. (2023). Innentitelbild: Synthesis of Supramolecular A8Bn Miktoarm Star Copolymers by Host‐Guest Complexation (Angew. Chem. 14/2023). Angewandte Chemie, 62(14), e202302402. https://doi.org/10.1002/anie.202302402
8
Low-pT direct-photon production in Au+Au collisions at √sNN=39 and 62.4 GeVPHENIX Collaboration. (2023). Low-p T direct-photon production in Au+ Au collisions at √sNN= 39 and 62.4 GeV. Physical Review C, 107, 024914. https://doi.org/10.1103/PhysRevC.107.024914
7
Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in p+p, p+Au, d+Au, and He3+Au collisions at √sNN = 200 GeVPHENIX Collaboration. (2023). Measurements of second-harmonic Fourier coefficients from azimuthal anisotropies in p+ p, p+ Au, d+ Au, and He 3+ Au collisions at √sNN= 200 GeV. Physical Review C, 107, 024907. https://doi.org/10.1103/PhysRevC.107.024907
6
System-size dependence of the charged-particle pseudorapidity density at for pp, psingle bondPb, and Pbsingle bondPb collisionsALICE Collaboration. (2023). System-size dependence of the charged-particle pseudorapidity density at sNN= 5.02 TeV for pp, pPb, and PbPb collisions. Physics Letters B, 845, 137730. https://doi.org/10.1016/j.physletb.2023.137730
5
Reaching percolation and conformal limits in neutron starsMarczenko, M., McLerran, L., Redlich, K., & Sasaki, C. (2023). Reaching percolation and conformal limits in neutron stars. Physical Review C, 107(2), 025802. https://doi.org/10.1103/PhysRevC.107.025802
4
Reorientation processes of tilted skyrmion and spiral states in a bulk cubic helimagnet Cu2OSeO3Leonov, A. O., & Pappas, C. (2023). Reorientation processes of tilted skyrmion and spiral states in a bulk cubic helimagnet Cu2OSeO3. Frontiers in Physics, 11, 1105784. https://doi.org/10.3389/fphy.2023.1105784
3
Closing in on critical net-baryon fluctuations at LHC energies: Cumulants up to third order in Pb—Pb collisionsALICE Collaboration. (2023). Closing in on critical net-baryon fluctuations at LHC energies: Cumulants up to third order in Pb—Pb collisions. Physics Letters B, 844, 137545. http://dx.doi.org/10.1016/j.physletb.2022.137545
2
Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb—Pb and Xe—Xe collisionsALICE Collaboration. (2023). Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb—Pb and Xe—Xe collisions. Physics Letters B, 846, 137453. https://doi.org/10.1016/j.physletb.2022.137453
1
First measurement of the Λ—Ξ interaction in proton—proton collisions at the LHCALICE Collaboration. (2023). First measurement of the Λ—Ξ interaction in proton—proton collisions at the LHC. Physics Letters B, 844, 137223. https://doi.org/10.1016/j.physletb.2022.137223